9. Maintenance
9.1 Troubleshooting for Normal Malfunction

- **Air conditioner can not start up**
  - The air conditioner does not react after it is powered (after the plug is inserted, the buzzer does not sound and the remote startup has no response)
  - The remote controller does not receive signals (after it is powered, the buzzer will sound, unless it has malfunction)
  - Power voltage is too low

- **Trip of breaker or blow of fuse**
  - The breaker trips at once when it is set to “ON”.
  - The breaker trips in few minutes when it is set to “ON”.

- **No power**
  - Power plug is not well plugged in and poor connection.
  - Fuse of controller burnt out
  - The transformer connection is loose or has bad contact or the transformer has malfunction.
  - Controller is broken
  - Remote controller is short of power

- **Remote controller malfunction**
  - Receiver loose or poor connection
  - Receiver is broken

- **Measure insulation resistance to ground to see if there is any leakage.**
- **The circuit or the part of the air conditioner has malfunction. They heat and break the insulation and lead to short circuit or creepage. Measure the insulation resistance or eliminate the malfunction one by one. If the breaker itself has malfunction, then replace the breaker.**
- **Check power supply circuit.**
- **Check if the plug is properly plugged in and make the loose contact firm.**
- **Change controller fuse**
- **Fasten the wiring; measure the output voltage of the transformer, if it is incorrect, change the transformer.**
- **Check remote controller**
- **First, press the manual switch button AUTO, if there is no response, check based on the above methods. If it runs normally after pressing the button, check again whether the installation position and the connection wire of the reception head is correct. If it is correct, then replace the receiver or the remote controller.**

- **Check the voltage. If it is lower than 10% of the rated voltage, check the cause, improve the power supply condition and add the stabilized voltage power supply.**
Improper set of temperature
- Adjust set temperature

If cooling (heating) load is proper
- Check the forecasted load of cooling (heating)

Malfunction of refrigerant flow
- The refrigerant has leakage or is insufficient
  - Check and fill the leakage, then vacuumize it and supplement the refrigerant as required
- Leakage between the high pressure and the low pressure inside the compressor
  - Replace the compressor
- Malfunction of four-way valve
  - Replace the four-way valve
- Local block of capillary
  - Replace the capillary
- Blockage of cooling system
  - Judge whether the system is blocked by observing the condensation of evaporator and the pressure value of the high pressure manometer and take measures to deal with the system.

Heat insulation for the connection pipes of the indoor unit and the outdoor unit is bad.
- Make sure that heat insulation for the thick and thin pipes is good. Heat insulation must also be provided for the joint and the exposed part of the copper pipe.

Block of outdoor heat exchanger
- Clean the dust accumulated on the surface of the heat exchanger.
- Air filter were blocked
  - Clean the filter
- Fan speed was set too slow
  - To set the fan speed to high or middle speed
- Fan rotation speed becomes low
  - Capacitor damage: Replace the capacitor
  - Motor damage: Replace the motor
- The installation position of the outdoor unit is not appropriate.
  - Good ventilation must be provided for the installation position of the outdoor unit.

The outdoor temperature is too high.
- Properly install the rainproof plate or the sunproof plate. If the maximum cool air still can not meet the requirement, it is suggested to replace the air conditioner.

Air circulation is insufficient
- The air tightness is not enough. People come in and out too frequently. There are heating devices indoors.
  - Keep certain air tightness indoors, try not to use electrical appliance with large quantity of heat

The air tightness is not enough. People come in and out too frequently. There are heating devices indoors.
- Keep certain air tightness indoors, try not to use electrical appliance with large quantity of heat
The fan does not run when it is set to supply air.

- The indoor fan motor is burned or breaks or has the heat protector malfunction.
  - Replace the fan motor or the defective part.
- The built-in heat protector of the motor breaks frequently because the motor is abnormal.
  - Replace the fan motor
- Wrong connection
  - Make the correct connection based on the circuit drawing.
- The fan capacitor has open circuit or is damaged.
  - Replace the fan capacitor of the same type and same specification.

In the cooling and heating mode, the compressor runs, but the outdoor fan does not run.

- The outdoor fan motor is damaged.
  - Replace the fan motor
- Wrong connection
  - Make the correct connection based on the circuit drawing
- The outdoor fan capacitor is damaged.
  - Replace the fan capacitor
- Malfunction of compressor
  - Replace the compressor
- Breakage of running capacitor of compressor
  - Replace the capacitor
- The voltage is too low or too high.
  - Manostat is recommended.
- Wrong wire connection
  - Connect the circuit diagram correctly
- The protector itself has malfunction.
  - Use the multimeter to check whether the contact of the compressor is on when it is not overheated. If it is not on, then replace the protector

In the cooling and heating mode, the outdoor fan runs, but the compressor does not run.

- The voltage is too low or too high.
  - Manostat is recommended.
- Wrong wire connection
  - Connect the circuit diagram correctly
- The protector itself has malfunction.
  - Use the multimeter to check whether the contact of the compressor is on when it is not overheated. If it is not on, then replace the protector

The compressor is too hot and leads to the action of the protector.

- The refrigerant is not enough or is too much.
  - Adjust the volume of the refrigerant
- The capillary is blocked and the temperature rises.
  - Replace the capillary
- The compressor does not run smoothly or is stuck. The air discharge valve is damaged.
  - Replace the compressor
- The protector itself has malfunction.
  - Replace the protector
The swing fan does not run.
- The torque of the swing motor is not enough
- Wrong connection
- The controller is damaged (IC2003 is damaged, the swing relay can not close, etc.)
- Controller malfunction (IC2003 broken, creepage of parallel capacitor of relay loop, relay is broken etc.)
- Water leakage
- Drainage pipe blocked or broken
- Wrap of refrigerant pipe joint is not close enough.
- Fan of indoor unit contacts other parts
- Foreign object in indoor unit
- Compressor shakes too much
- Touch of pipeline of outdoor unit
- Touch of inner plates
- Louver of outdoor unit touched outer case.
- Abnormal sound inside compressor
- Abnormal sound and shake
- In cool, heat mode, the outdoor unit and compressor will not run.
- Abnormal sound inside compressor
- First, check whether the connection is wrong. If no, replace the parts
- Change controller
- Correctly wire according to the drawing
- Adjust setting temp.
- Change drainage pipe
- Re-wrap and make it tight.
- Adjust fan location
- Take out the foreign object
- Adjust support washer of compressor, and tighten loosen screws
- Separate the touching pipeline.
- 1. Tighten connect screw. 2. Stick absorbing clay between plates.
- Adjust location of louver.
- Change compressor
# 9.2 Error Code List

<table>
<thead>
<tr>
<th>No.</th>
<th>Malfunction Name</th>
<th>Dual-8 Code Display</th>
<th>Display Method of Outdoor Unit Indicator has 3 kinds of display status and during blinking, ON 0.5s and OFF 0.5s</th>
<th>A/C status</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High pressure protection of system</td>
<td>E1</td>
<td>Yellow Indicator: Red Indicator: Green Indicator</td>
<td>During cooling and drying operation, except indoor fan operates, all loads stop operation. During heating operation, the complete unit stops.</td>
<td>1. Refrigerant was superabundant; 2. Poor heat exchange (including filth blockage of heat exchanger and bad radiating environment); Ambient temperature is too high.</td>
</tr>
<tr>
<td>2</td>
<td>Antifreezing protection</td>
<td>E2</td>
<td>OFF 1s and blink 3 times</td>
<td>During cooling and drying operation, compressor and outdoor fan stop while indoor fan operates.</td>
<td>1. Poor air-return in indoor unit; 2. Fan speed is abnormal; 3. Evaporator is dirty.</td>
</tr>
<tr>
<td>3</td>
<td>Refrigerant leakage protection</td>
<td>F0</td>
<td>OFF 1s and blink 9 times</td>
<td>The Dual-8 Code Display will show F0 and the complete unit stops.</td>
<td>1. Refrigerant leakage; 2. Indoor evaporator temperature sensor works abnormally; 3. The unit has been plugged up somewhere.</td>
</tr>
<tr>
<td>4</td>
<td>High discharge temperature protection of compressor</td>
<td>E4</td>
<td>OFF 1s and blink 7 times</td>
<td>During cooling and drying operation, compressor and outdoor fan stop while indoor fan operates. During heating operation, all loads stop.</td>
<td>Please refer to the malfunction analysis (discharge protection, overload).</td>
</tr>
<tr>
<td>5</td>
<td>Overcurrent protection</td>
<td>E5</td>
<td>OFF 1s and blink 5 times</td>
<td>During cooling and drying operation, compressor and outdoor fan stop while indoor fan operates. During heating operation, all loads stop.</td>
<td>1. Supply voltage is unstable; 2. Supply voltage is too low and load is too high; 3. Evaporator is dirty.</td>
</tr>
<tr>
<td>6</td>
<td>Communication Malfunction</td>
<td>E6</td>
<td>Always ON</td>
<td>During cooling operation, compressor stops while indoor fan motor operates. During heating operation, the complete unit stops.</td>
<td>Refer to the corresponding malfunction analysis.</td>
</tr>
<tr>
<td>7</td>
<td>High temperature resistant protection</td>
<td>E8</td>
<td>OFF 1s and blink 6 times</td>
<td>During cooling operation: compressor will stop while indoor fan will operate. During heating operation, the complete unit stops.</td>
<td>Refer to the malfunction analysis (overload, high temperature resistant).</td>
</tr>
<tr>
<td>8</td>
<td>EEPROM malfunction</td>
<td>EE</td>
<td>OFF 1s and blink 11 times</td>
<td>During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop</td>
<td>Replace outdoor control panel AP1.</td>
</tr>
<tr>
<td>9</td>
<td>Limit/decrease frequency due to high temperature of module</td>
<td>EU</td>
<td></td>
<td>All loads operate normally, while operation frequency for compressor is decreased</td>
<td>Discharging after the complete unit is de-energized for 20mins, check whether the thermal grease on IPM Module of outdoor control panel AP1 is sufficient and whether the radiator is inserted tightly. If its no use, please replace control panel AP1.</td>
</tr>
<tr>
<td>10</td>
<td>Malfunction protection of jumper cap</td>
<td>C5</td>
<td></td>
<td>Wireless remote receiver and button are effective, but can not dispose the related command</td>
<td>1. No jumper cap insert on mainboard; 2. Incorrect insert of jumper cap; 3. Jumper cap damaged; 4. Abnormal detecting circuit of mainboard.</td>
</tr>
<tr>
<td>No.</td>
<td>Malfunction Name</td>
<td>Dual-8 Code Display</td>
<td>Display Method of Outdoor Unit Indicator has 3 kinds of display status and during blinking, ON 0.5s and OFF 0.5s</td>
<td>A/C status</td>
<td>Possible Causes</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------</td>
<td>---------------------</td>
<td>---------------------------------------------------------------------------------------------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yellow Indicator</td>
<td>Red Indicator</td>
<td>Green Indicator</td>
</tr>
<tr>
<td>11</td>
<td>Gathering refrigerant</td>
<td>F0</td>
<td>OFF 1s and blink 17 times</td>
<td>When the outdoor unit receive signal of Gathering refrigerant, the system will be forced to run under cooling mode for gathering refrigerant</td>
<td>Nominal cooling mode</td>
</tr>
<tr>
<td>12</td>
<td>Indoor ambient temperature sensor is open/short circuited</td>
<td>F1</td>
<td></td>
<td>During cooling and drying operation, indoor unit operates while other loads will stop; during heating operation, the complete unit will stop operation.</td>
<td>1. Loosening or bad contact of indoor ambient temp. sensor and mainboard terminal. 2. Components in mainboard fell down leads short circuit. 3. Indoor ambient temp. sensor damaged. (Check with sensor resistance value chart) 4. Mainboard damaged.</td>
</tr>
<tr>
<td>13</td>
<td>Indoor evaporator temperature sensor is open/short circuited</td>
<td>F2</td>
<td></td>
<td>AC stops operation once reaches the setting temperature. Cooling, drying, internal fan motor stops operation while other loads stop operation; Heating: AC stop operation</td>
<td>1. Loosening or bad contact of Indoor evaporator temp. sensor and mainboard terminal. 2. Components on the mainboard fall down leads short circuit. 3. Indoor evaporator temp. sensor damaged. (Check temp. sensor value chart for testing) 4. Mainboard damaged.</td>
</tr>
<tr>
<td>14</td>
<td>Outdoor ambient temperature sensor is open/short circuited</td>
<td>F3</td>
<td>OFF 1s and blink 6 times</td>
<td>During cooling and drying operating, compressor stops while indoor fan operates; During heating operation, the complete unit will stop operation.</td>
<td>Outdoor temperature sensor has not been connected well or is damaged. Please check it by referring to the resistance table for temperature sensor.</td>
</tr>
<tr>
<td>15</td>
<td>Outdoor condenser temperature sensor is open/short circuited</td>
<td>F4</td>
<td>OFF 1s and blink 5 times</td>
<td>During cooling and drying operating, compressor stops while indoor fan will operate; During heating operation, the complete unit will stop operation.</td>
<td>Outdoor temperature sensor has not been connected well or is damaged. Please check it by referring to the resistance table for temperature sensor.</td>
</tr>
<tr>
<td>16</td>
<td>Outdoor discharge temperature sensor is open/short circuited</td>
<td>F5</td>
<td>OFF 1s and blink 7 times</td>
<td>During cooling and drying operating, compressor will stop after operating for about 3 mins, while indoor fan will operate; During heating operation, the complete unit will stop after operating for about 3 mins.</td>
<td>1. Outdoors temperature sensor has not been connected well or is damaged. Please check it by referring to the resistance table for temperature sensor. 2. The head of temperature sensor has not been inserted into the copper tube.</td>
</tr>
<tr>
<td>17</td>
<td>Limit/decrease frequency due to overload</td>
<td>F6</td>
<td>OFF 1s and blink 3 times</td>
<td>All loads operate normally, while operation frequency for compressor is decreased</td>
<td>Refer to the malfunction analysis (overload, high temperature resistant)</td>
</tr>
<tr>
<td>18</td>
<td>Decrease frequency due to overcurrent</td>
<td>F8</td>
<td>OFF 1s and blink once</td>
<td>All loads operate normally, while operation frequency for compressor is decreased</td>
<td>The input supply voltage is too low; System pressure is too high and overload.</td>
</tr>
<tr>
<td>19</td>
<td>Decrease frequency due to high air discharge</td>
<td>F9</td>
<td>OFF 1s and blink twice</td>
<td>All loads operate normally, while operation frequency for compressor is decreased</td>
<td>Overload or temperature is too high; Refrigerant is insufficient; Malfunction of electric expansion valve (EKV)</td>
</tr>
<tr>
<td>20</td>
<td>Limit/decrease frequency due to antifreezing</td>
<td>FH</td>
<td>OFF 1s and blink 4 times</td>
<td>All loads operate normally, while operation frequency for compressor is decreased</td>
<td>Poor air-return in indoor unit or fan speed is too low</td>
</tr>
</tbody>
</table>
### Service Manual

#### Installation and Maintenance

| No. | Malfunction Name                     | Dual-8 Code Display | Display Method of Outdoor Unit
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicator has 3 kinds of display status and during blinking, ON 0.5s and OFF 0.5s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow Indicator</td>
<td>Red Indicator</td>
<td>Green Indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Voltage for DC bus-bar is too high</td>
<td>PH</td>
<td>During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.</td>
</tr>
<tr>
<td></td>
<td>Voltage for DC bus-bar is too low</td>
<td>PL</td>
<td>During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.</td>
</tr>
<tr>
<td>22</td>
<td>Compressor Min frequency in test state</td>
<td>P0</td>
<td>Showing during min. cooling or min. heating test</td>
</tr>
<tr>
<td>23</td>
<td>Compressor rated frequency in test state</td>
<td>P1</td>
<td>Showing during nominal cooling or nominal heating test</td>
</tr>
<tr>
<td>24</td>
<td>Compressor maximum frequency in test state</td>
<td>P2</td>
<td>Showing during max. cooling or max. heating test</td>
</tr>
<tr>
<td>25</td>
<td>Compressor intermediate frequency in test state</td>
<td>P3</td>
<td>Showing during middle cooling or middle heating test</td>
</tr>
<tr>
<td>26</td>
<td>Overcurrent protection of phase current for compressor</td>
<td>P5</td>
<td>During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.</td>
</tr>
<tr>
<td>27</td>
<td>Charging malfunction of capacitor</td>
<td>PU</td>
<td>During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.</td>
</tr>
<tr>
<td>28</td>
<td>Malfunction of module temperature sensor circuit</td>
<td>P7</td>
<td>During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.</td>
</tr>
<tr>
<td>29</td>
<td>Possible Causes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Measure the voltage of position L and N on wiring board (XT), if the voltage is higher than 265VAC, turn on the unit after the supply voltage is increased to the normal range.
2. If the AC input is normal, measure the voltage of electrolytic capacitor C on control panel (AP1), if it’s normal, there’s a malfunction for the circuit, please replace the control panel (AP1).
<table>
<thead>
<tr>
<th>No.</th>
<th>Malfunction Name</th>
<th>Dual-8 Code Display</th>
<th>Display Method of Outdoor Unit</th>
<th>A/C status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Indicator has 3 kinds of display status and during blinking, ON 0.5s and OFF 0.5s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yellow Indicator</td>
<td>Red Indicator</td>
</tr>
<tr>
<td>30</td>
<td>Module high temperature protection</td>
<td>P8</td>
<td>&quot;During cooling operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop.&quot;</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Overload protection for compressor</td>
<td>H3</td>
<td>&quot;During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.&quot;</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>IPM protection</td>
<td>H5</td>
<td>&quot;During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.&quot;</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Module temperature is too high</td>
<td>H5</td>
<td>Internal fan motor, external fan motor, compressor and electric heater stop operation, guide louver stops at present location.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Internal motor(fan motor) do not operate</td>
<td>H6</td>
<td>Refer to the malfunction analysis (overload, high temperature resistant)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Desynchronizing of compressor</td>
<td>H7</td>
<td>Refer to the malfunction analysis (IPM protection, loss of synchronism protection and overcurrent protection of phase current for compressor).</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>PFC protection</td>
<td>HC</td>
<td>&quot;During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.&quot;</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Outdoor DC fan motor malfunction</td>
<td>L3</td>
<td>Outdoor DC fan motor malfunction lead to compressor stop operation</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>power protection</td>
<td>L9</td>
<td>compressor stop operation and Outdoor fan motor will stop 30s latter, 3 minutes latter fan motor and compressor will restart</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Indoor unit and outdoor unit doesn’t match</td>
<td>LP</td>
<td>compressor and Outdoor fan motor can’t work</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Failure startup</td>
<td>LC</td>
<td>&quot;During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop operation.&quot;</td>
<td></td>
</tr>
</tbody>
</table>

Possible Causes:

- **Service Manual**
- **Installation and Maintenance**
<table>
<thead>
<tr>
<th>No.</th>
<th>Malfunction Name</th>
<th>Dual-8 Code Display</th>
<th>Display Method of Outdoor Unit Indicator has 3 kinds of display status and during blinking, ON 0.5s and OFF 0.5s</th>
<th>A/C status</th>
<th>Possible Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Malfunction of phase current detection circuit for compressor</td>
<td>U1</td>
<td><strong>Yellow Indicator</strong></td>
<td>&quot;During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop.&quot;</td>
<td>To protect the electronical components when detect high power</td>
</tr>
<tr>
<td>42</td>
<td>Malfunction of voltage dropping for DC bus-bar</td>
<td>U3</td>
<td><strong>Red Indicator</strong></td>
<td>&quot;During cooling and drying operation, compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop.&quot;</td>
<td>Indoor unit and outdoor unit doesn't match</td>
</tr>
<tr>
<td>43</td>
<td>Malfunction of complete units current detection</td>
<td>U5</td>
<td><strong>Green Indicator</strong></td>
<td>&quot;During cooling and drying operation, the compressor will stop while indoor fan will operate; During heating operation, the complete unit will stop.&quot;</td>
<td>Refer to the malfunction analysis</td>
</tr>
<tr>
<td>44</td>
<td>The four-way valve is abnormal</td>
<td>U7</td>
<td></td>
<td>If this malfunction occurs during heating operation, the complete unit will stop operation.</td>
<td>Replace outdoor control panel AP1</td>
</tr>
<tr>
<td>45</td>
<td>Frequency limiting(power)</td>
<td></td>
<td><strong>OFF 1s and blink 13 times</strong></td>
<td></td>
<td>Supply voltage is unstable</td>
</tr>
<tr>
<td>46</td>
<td>Compressor running</td>
<td></td>
<td><strong>OFF 1s and blink once</strong></td>
<td></td>
<td>Therere's circuit malfunction on outdoor units control panel AP1, please replace the outdoor units control panel AP1.</td>
</tr>
<tr>
<td>47</td>
<td>The temperature for turning on the unit is reached</td>
<td></td>
<td><strong>OFF 1s and blink 8 times</strong></td>
<td>1. Supply voltage is lower than 175V; 2. Wiring terminal 4V is loosened or broken; 3. 4V is damaged, please replace 4V.</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Frequency limiting(module temperature)</td>
<td></td>
<td><strong>OFF 1s and blink 11 times</strong></td>
<td></td>
<td>Replace outdoor control panel AP1</td>
</tr>
<tr>
<td>49</td>
<td>Normal communication</td>
<td></td>
<td><strong>OFF 0.5s and blink once</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Defrosting (Heating indicator ON 10s OFF 0.5s)</td>
<td></td>
<td></td>
<td><strong>Defrosting will occur in heating mode. Compressor will operate while indoor fan will stop operation.</strong></td>
<td></td>
</tr>
</tbody>
</table>
9.3 Troubleshooting for Main Malfunction

*Indoor unit:

1. Malfunction of Temperature Sensor F1, F2

---

**Troubleshooting for F1,F2 malfunction**

- Is the wiring terminal between the temperature sensor and the controller loosened or poorly contacted?
  - Yes: Insert the temperature sensor tightly
  - No: Is malfunction eliminated?

- Is there short circuit due to trip/over of the parts?
  - Yes: Make the parts upright
  - No: Is malfunction eliminated?

- Is the temperature sensor normal according to the Resistance Table?
  - Yes: Replace it with a temperature sensor with the same model
  - No: Replace the mainboard with the same model.

---

End
2. Malfunction of Blocked Protection of IDU Fan Motor H6

- Start
- Turn the fan blades by hand under power-off condition
- Whether the fan blades can run smoothly?
  - Yes
  - No
- Adjust the motor and blade assembly so that rotor can run smoothly.
- Under power-off condition, check whether the wiring terminal between indoor fan and main board is loose.
  - Yes
  - No
  - No
- Reinsert the wiring terminal of indoor fan.
  - Yes
  - No
- Turn unit on to check whether the malfunction is eliminated.
- Connect power and restart the unit.
  - Test whether the voltage between terminal 1 and terminal 2 of motor interface is within 280~310VDC.
    - Yes
    - No
    - No
  - It's the malfunction of main board. Replace a new main board that is of the same model.
  - Then check whether there is voltage between terminal 2 and terminal 3 of the motor interface.
    - Yes
    - No
    - No
  - It's the malfunction of motor. Replace a new motor that is of the same model.
- Then check whether there is voltage between terminal 2 and terminal 4 of the motor interface.
  - Yes
  - No
  - No
- It's the malfunction of main board. Replace a new main board that is of the same model.

End
3. Malfunction of Protection of Jumper Cap C5

Troubleshooting for C5 malfunction

Is there jumper cap on the mainboard?

- yes
  - Is the jumper cap inserted correctly and tightly?
    - yes
      - Is malfunction eliminated?
        - yes
          - End
        - no
          - Replace the jumper cap with the same model
          - Is malfunction eliminated?
            - yes
              - End
            - no
              - Insert the jumper cap tightly
    - no
      - Replace the jumper cap with the same model
      - Is malfunction eliminated?
        - yes
          - End
        - no
          - Replace the mainboard with the same model.

- no
  - Appearance of the jumper cap
  - Assemble the jumper cap with the same model
  - Is malfunction eliminated?
    - yes
      - End
    - no
      - Is the jumper cap inserted correctly and tightly?
        - yes
          - Is malfunction eliminated?
            - yes
              - End
            - no
              - Replace the jumper cap with the same model
              - Is malfunction eliminated?
                - yes
                  - End
                - no
                  - Replace the mainboard with the same model.
4. Communication malfunction E6

Start

Cut off power, check if the wire between indoor unit and outdoor unit, and the wire inside electric box are connected correctly

Connected correctly? No

Reconnect the wire according to wiring diagram

Malfunction is eliminated

Yes

No

Is there incorrect match between the mainboard and the display panel or between the indoor and outdoor mainboards?

No

Malfunction is eliminated

Yes

Match them according to the requirement

Replace outdoor mainboard

Malfunction is eliminated

Yes

No

Communication wire connection is broken?

No

Yes

Replace the wire

Malfunction is eliminated

Yes

No

Replace indoor mainboard

Malfunction is eliminated

Yes

No

Replace outdoor mainboard

End
● Outdoor unit:

(1) Capacitor charge fault (Fault with outdoor unit) (AP1 below refers to the outdoor control panel)

Main Check Points:
- Use AC voltmeter to check if the voltage between terminal L and N on the wiring board is within 210VAC~240VAC.
- Is the reactor (L) correctly connected? Is the connection loose or fallen? Is the reactor (L) damaged?

Fault diagnosis process:

Turn on the unit and wait 1 minute

Use DC voltmeter to measure the voltage on the two ends of electrolytic capacitor

Voltage higher than 200V?

Y

Fault with the voltage testing circuit on control panel AP1

Replace the control panel AP1

N

Measure the AC voltage between terminal L and N on wiring board XT (power supply)

Voltage within 210VAC~250VAC?

N

Shut down the power and repair the power supply to restore the range 210VAC~250VAC

power on and restart the unit

Y

If the fault is eliminated?

N

Shut down the power and wait 20 minutes; or use DC voltmeter to measure the voltage on the two ends of capacitor, until the voltage is lower than 20V

Check the connection of reactor (L in the Electrical Wiring Diagram)

If the wiring of reactor L is normal?

N

Connect the reactor according to Electrical Wiring Diagram correctly

Re-energize and turn on the unit

Y

If the fault is eliminated?

N

Replace the control panel AP1

End
(2) IPM Protection, Out-of-step Fault, Compressor Phase Overcurrent (AP1 below refers to the outdoor control panel)

Main check points:
- Is the connection between control panel AP1 and compressor COMP secure? Loose? Is the connection in correct order?
- Is the voltage input of the machine within normal range? (Use AC voltmeter to measure the voltage between terminal L and N on the wiring board XT)
- Is the compressor coil resistance normal? Is the insulation of compressor coil against the copper tube in good condition?
- Is the working load of the machine too high? Is the radiation good?
- Is the charge volume of refrigerant correct?

Fault diagnosis process:

1. Energize and switch on.
2. Use AC voltmeter to measure the voltage between terminal L and N on the wiring board XT.
3. If the voltage is within 210V~250V, check the supply voltage and restore it to 210V~250V.

   Y: Voltage between the two ends of electrolytic capacitor is higher than 250V.
   N: Restart the unit. Before protection occurs, use DC voltmeter to measure the voltage between the two ends of electrolytic capacitor on control panel AP1.

   Y: If the unit can work normally?
   N: Take corrective actions according to Technical Service Manual, then energize and start the unit.

   Y: If there is any abnormality described above?
   N: Replace the control panel AP1.

   Y: If the connection between AP1 and COMP is loose and if the connection order is correct.
   N: Use ohmmeter to measure the resistance between the three terminals on compressor COMP, and compare the measurements with the compressor resistance on Service Manual.

   Y: If the resistance is normal?
   N: Replace the control panel AP1.

   Y: If the connection between AP1 and COMP is unsecure or the connection order is wrong?
   N: Refer to the Electrical Wiring Diagram and check if the connection between AP1 and COMP is loose and if the connection order is correct.

   Y: Connect the control panel AP1 and compressor COMP correctly according to the Electrical Wiring Diagram. Then, energize and start the unit.
   N: If the unit can work normally?

   Y: Take corrective actions according to Technical Service Manual, and then energize and start the unit.
   N: Replace the control panel AP1.

   Y: Use ohmmeter to measure the resistance between the two terminals of compressor COMP and copper tube.
   N: Replace the control panel AP1.

   Y: Resistance higher than 500MΩ?
   N: Replace the compressor COMP.

   Y: Use ohmmeter to measure the resistance between the two ends of capacitor C2.
   N: Replace the capacitor C2. Then, energize and start the unit.

   Y: If capacitor C2 is failed?
   N: Refer to the Electrical Wiring Diagram and check if the connection between AP1 and COMP is loose and if the connection order is correct.

   Y: Stop the unit and disconnect the power supply. Then, check the connection of capacitor C2 according to Electrical Wiring Diagram.
   N: Disconnect the power supply. Wait 20 minutes, or use DC voltmeter to measure the voltage between the two ends of capacitor C2. If the voltage is lower than 20V, reconnect the capacitor C2 according to Electrical Wiring Diagram. Then, restart the unit.

   Y: If the unit can work normally?
   N: Replace the control panel AP1.

   Y: If the connection between AP1 and COMP is unsecure or the connection order is wrong?
   N: Connect the control panel AP1 and compressor COMP correctly according to the Electrical Wiring Diagram. Then, energize and start the unit.

   Y: If there is any abnormality described above?
   N: Replace the control panel AP1.

   Y: If the unit can work normally?
   N: Replace the control panel AP1.

   Y: If the connection between AP1 and COMP is loose and if the connection order is correct.
   N: Use ohmmeter to measure the resistance between the three terminals on compressor COMP, and compare the measurements with the compressor resistance on Service Manual.

   Y: If the resistance is normal?
   N: Replace the control panel AP1.
(3) High temperature and overload protection diagnosis (AP1 hereinafter refers to the control board of the outdoor unit)
Mainly detect:
- Is outdoor ambient temperature in normal range?
- Are the outdoor and indoor fans operating normally?
- Is the heat dissipation environment inside and outside the unit good?
Fault diagnosis process:

- Overheat and high temperature protection
- Is outdoor ambient temperature higher than 53?
  - Y: Normal protection, please operate it after the outdoor ambient temperature is normalized.
  - N: 20 minutes after the complete unit is powered off.
  - Is heat dissipation of the indoor unit and outdoor unit abnormal?
    - Y: Improve the heat dissipation environment of the unit
    - N: Does the outdoor fan work normally?
      - Y: Replace the control panel AP1
      - N: 1. Check if the fan terminal OFAN is connected correctly
          2. Resistance between any two terminals is measured by an ohm gauge and should be less than 1K Ohm.
          - Y: Replace the fan capacitor C1
          - N: Replace the outdoor fan

End
(4) Start-up failure (following AP1 for outdoor unit control board)

Mainly detect:
- Whether the compressor wiring is connected correct?
- Is compressor broken?
- Is time for compressor stopping enough?

Fault diagnosis process:

1. Power on the unit
2. Is stop time of the compressor longer than 3 minutes?
   - No: Restart it up after 3 minutes
   - Yes: Does startup fail?
3. Does startup fail?
   - No: Are the wires for the compressor connected correctly? Is connection sequence right?
     - No: Connect the wires as per the connection diagram
     - Yes: Replace the control panel AP1
   - Yes: If the fault is eliminated?
     - No: Replace the compressor
     - Yes: End
(5) Out of step diagnosis for the compressor (AP1 hereinafter refers to the control board of the outdoor unit)

Mainly detect:
- Is the system pressure too high?
- Is the input voltage too low?

Fault diagnosis process:

Out of step occurs once the unit is powered on.

- Is stop time of the compressor longer than 3 minutes?
  - Y: Are the wires for the compressor connected correctly? Is connection sequence right? Is the connection made in clockwise direction?
    - Y: Connect the wires correctly
    - N: Replace the control panel AP1
  - N: Replace the compressor

- N: If the fault is eliminated?
  - Y: Replace the compressor
  - N: End

Out of step occurs in operation

- Is the outdoor fan working normally?
  - Y: Check if the fan terminal OFAN is connected correctly
    - Y: Replace the fan capacitor C1
    - N: Replace the outdoor fan
  - N: If the fault is eliminated?
    - Y: Replace the compressor
    - N: End

- Is the outdoor unit blocked by foreign objects?
  - Y: Replace the control panel AP1
  - N: Remove foreign objects

Check if the fan terminal OFAN is connected correctly

- Replace the outdoor fan

End
(6) Overload and air exhaust malfunction diagnosis (following AP1 for outdoor unit control board)
Mainly detect:
• Is the PMV connected well or not? Is PMV damaged?
• Is refrigerant leaked?
Fault diagnosis process:

20 minutes after the complete unit is powered off

Is the terminal FA for the electronic expansion valve connected correctly?

Connect the wires correctly

Resistances between the first four pins close to the terminal hole and the fifth pin are almost the same, less than 100 ohm.

Replace the electronic expansion valve

If the fault is eliminated?

Y

N

Replace the control panel AP1

If the fault is eliminated?

Y

N

Coolant leakage, refilling the coolant

End
(7) Power factor correct or (PFC) fault (a fault of outdoor unit) (AP1 hereinafter refers to the control board of the outdoor unit)

Mainly detect:
- Check if the reactor (L) of the outdoor unit and the PFC capacitor are broken

Fault diagnosis process:

Start

Check wiring of the reactor (L) of the outdoor unit and the PFC capacitor

Whether there is any damage or short-circuit?

Y
Replace it as per the wiring diagram and reconnect the wires

If the fault is eliminated?

N
Remove the PFC capacitor and measure resistance between the two terminals.

N
Replace the control panel AP1

End

N
Whether there is any damage or short-circuit?

Y
Replace the reactor

N
Disconnect the terminals for the reactor and measure the resistance between the two terminals of the reactor by an ohm gauge

Y
The capacitor is short circuited and the capacitor should be replaced

Restart the unit If the fault is eliminated?

N
Is the resistance around zero?

Y
Restart the unit If the fault is eliminated?

N
Disconnect the terminals for the reactor and measure the resistance between the two terminals of the reactor by an ohm gauge

Y
Replace the reactor

N
Restart the unit If the fault is eliminated?

Y
(8) Communication malfunction: (following AP1 for outdoor unit control board)
Mainly detect:
• Is there any damage for the indoor unit mainboard communication circuit? Is communication circuit damaged?
• Detect the indoor and outdoor units connection wire and indoor and outdoor units inside wiring is connect well or not, if is there any damage?

Fault diagnosis process:

Start

Did the equipment operate normally before the failure occurs?

Y

Check wiring inside of the indoor and outdoor units

N

Check the wiring of the indoor and outdoor units with reference to the wiring diagram

Y

Are wires broken?

N

Is the connection right?

Y

Correctly connect the corresponding wires for the indoor and outdoor units with reference to the wiring diagram

N

If the fault is eliminated?

Start

N

The AP1 voltage detection circuit is at fault

Y

If the fault is eliminated?

N

Replace the main board of the indoor unit

Y

Replace the main board (AP1) of the outdoor unit

N

If the fault is eliminated?

End

Y

N

Check the communication circuit of the outdoor unit

Y

The communication circuit is abnormal

N

Replace the main board of the indoor unit

If the fault is eliminated?
10. Exploded View and Parts List

10.1 Indoor Unit
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>GWH09TA-K3DNA1B/I(dred)</th>
<th>GWH12TB-K3DNA1B/I(dred)</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front Panel</td>
<td>CB148N02801</td>
<td>CB148N02901</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Display Board</td>
<td>30565140</td>
<td>30565140</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Filter Sub-Assy</td>
<td>11122117</td>
<td>1112211602</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Front Case Sub-assy</td>
<td>20022003</td>
<td>20012889</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Guide Louver</td>
<td>10512712</td>
<td>10512147</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Guide Louver (small)</td>
<td>10512176</td>
<td>10512127</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Axle Bush</td>
<td>10542036</td>
<td>10542036</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Air Louver (left)</td>
<td>10512234</td>
<td>10512232</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Helicoid Tongue sub-assy</td>
<td>261126001</td>
<td>2611224401</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Left Axle Bush</td>
<td>10512037</td>
<td>10512037</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>SteppingMotor</td>
<td>15212123</td>
<td>15212123</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Propeller Axle Bush</td>
<td>1054202101</td>
<td>1054202101</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Fan Bearing</td>
<td>76512210</td>
<td>76512210</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Electrostatic Duster</td>
<td>/</td>
<td>/</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Evaporator Support</td>
<td>24212114</td>
<td>24212114</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Cold Plasma Generator</td>
<td>/</td>
<td>/</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Evaporator Assy</td>
<td>0100230101</td>
<td>01002641</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Cross Flow Fan</td>
<td>10352038</td>
<td>10352033</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Drainage Hose</td>
<td>0523001408</td>
<td>05230014</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Fan Motor</td>
<td>15012510</td>
<td>15012510</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Wall Mounting Frame</td>
<td>01252484</td>
<td>01252484</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Motor Press Plate</td>
<td>26112209</td>
<td>26112209</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Rubber Plug (Water Tray)</td>
<td>76712012</td>
<td>76712012</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Connecting pipe clamp</td>
<td>261126402</td>
<td>261126402</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Rear Case assy</td>
<td>2220217101</td>
<td>2220216104</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Crank</td>
<td>10582070</td>
<td>10582070</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>SteppingMotor</td>
<td>15212125</td>
<td>15212125</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>SteppingMotor</td>
<td>15212126</td>
<td>15212126</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Electric Box Cover</td>
<td>2012240901</td>
<td>2012240901</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Shield Cover of Electric Box</td>
<td>01592084</td>
<td>01592084</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>Terminal Board</td>
<td>42011233</td>
<td>42011233</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>Jumper</td>
<td>4202300101</td>
<td>4202300103</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>Main Board</td>
<td>30138000313</td>
<td>30138000313</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>Electric Box Assy</td>
<td>10000200782</td>
<td>10000200783</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>Electric Box Cover2</td>
<td>20122075</td>
<td>20122075</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Screw Cover</td>
<td>24252016</td>
<td>24252016</td>
<td>3</td>
</tr>
<tr>
<td>37</td>
<td>Power Cord</td>
<td>/</td>
<td>/</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>Connecting Cable</td>
<td>4002052330</td>
<td>4002052330</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>Temperature Sensor</td>
<td>3900000598</td>
<td>3900000598</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>Temperature Sensor</td>
<td>3900000451</td>
<td>3900000451</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>Remote Controller</td>
<td>30510137</td>
<td>30510137</td>
<td>1</td>
</tr>
</tbody>
</table>

Above data is subject to change without notice.
10.2 Outdoor Unit

GWH09TA-K3DNA1B/O(dred)
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part Code</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electric Box Assy</td>
<td>10000100124</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Electric Box Sub-Assy</td>
<td>10000500046</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Main Board</td>
<td>30138000320</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Reactor</td>
<td>43130184</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Terminal Board</td>
<td>42010313</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Wire Clamp</td>
<td>71010003</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Front Grill</td>
<td>22413008</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Front Panel</td>
<td>01533034P</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Axial Flow Fan</td>
<td>10333004</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Chassis Sub-assy</td>
<td>02803151P</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Fan Motor</td>
<td>1501308506</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Small Handle</td>
<td>26233100</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Top Cover Sub-Assy</td>
<td>0125307002</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Motor Support</td>
<td>0170310401</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Condenser Assy</td>
<td>01163760</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Sensor Insert</td>
<td>42020063</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Rear Grill</td>
<td>01473009</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Capillary Sub-assy</td>
<td>03163170</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Temp Sensor Sleevng</td>
<td>05212423</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Cut off Valve</td>
<td>07133082</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Big Handle</td>
<td>26233433</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Valve</td>
<td>071302391</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Valve Support</td>
<td>0171314201P</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Right Side Plate Sub-Assy</td>
<td>0130317801</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>4-Way Valve Assy</td>
<td>03073043</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>Clapboard Sub-Assy</td>
<td>0123338502</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>Magnetic Ring</td>
<td>49018000015</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Compressor and Fittings</td>
<td>0010322402_G</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Drainage Connecter</td>
<td>06123401</td>
<td>1</td>
</tr>
</tbody>
</table>

Above data is subject to change without notice.
GWH12TB-K3DNA1B/O(dred)
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Part Code</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left Side Plate</td>
<td>01303200P</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Fan Motor</td>
<td>1501308506</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Motor Support</td>
<td>01703138</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Condenser Assy</td>
<td>01100200122</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Top Cover Sub-Assy</td>
<td>01253081</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Rear Grill</td>
<td>01475014</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Clapboard Sub-Assy</td>
<td>01233180</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Compressor and Fittings</td>
<td>00103892</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Compressor Gasket</td>
<td>76713027</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>4-Way Valve Assy</td>
<td>03015200083</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Big Handle</td>
<td>26233431</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>Cut off Valve Sub-Assy</td>
<td>03005700067</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>Cut off Valve Assy</td>
<td>0713380601</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>Valve Support</td>
<td>0171314201P</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Front Grill</td>
<td>22413014</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Cabinet</td>
<td>01433033P</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Axial Flow Fan</td>
<td>10333011</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Chassis Sub-assy</td>
<td>017000000033P</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>Electric Box Assy</td>
<td>10000100125</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>Electric Box</td>
<td>201113032</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>Communication Interface Board</td>
<td>30110103</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>Main Board</td>
<td>301380000436</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>Reactor</td>
<td>43130184</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Wire Clamp</td>
<td>710100003</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>Terminal Board</td>
<td>42010313</td>
<td>1</td>
</tr>
</tbody>
</table>

Above data is subject to change without notice.